With the above cell averaging CFAR detector, assuming the data passed into the detector is from a single pulse, i.e., no pulse integration involved, the threshold factor can be written as [1]
使用上述单元平均 CFAR 检测器,假设传入检测器的数据来自单个脉冲,即不涉及脉冲积分,阈值因子可以写为 [1]
%% 画图 figure; plot(SNR_dB,Pd_CA,'r-*'); hold on; plot(SNR_dB,Pd_SO,'k-^'); plot(SNR_dB,Pd_GO,'b-o'); plot(SNR_dB,Pd_OS,'m-.'); grid on; xlabel('SNR','FontName','Time New Romans','FontAngle','italic'); ylabel('P_{d}','FontName','Time New Romans','FontAngle','italic'); title(['恒虚警率 P_{fa}= ',num2str(P_fa),',参考单元 2n= ',num2str(R)]); legend('CA','SO','GO','OS');
参考文献
[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005
[2] 王蓓. 基于杂波图的恒虚警处理技术研究[D]. 西安电子科技大学, 2018.
[3] Detection loss due to interfering targets in ordered statistics CFAR.
[4] P. P. Gandhi and S. A. Kassam, “Analysis of CFAR processors in nonhomogeneous background,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, pp. 427-445, July 1988, doi: 10.1109/7.7185.
keywords: {Detectors;Radar detection;Degradation;Radar clutter;Senior members;Statistical distributions;Process design;Performance analysis;Clouds;Noise level},